Carbon-Carbon Triple Bonds as Nucleophiles: Adducts of Ethyne and Propyne with Boron Trifluoride

W. A. Herrebout, ${ }^{\dagger}$ J. Lundell, ${ }^{\dagger}$ and B. J. van der Veken*, ${ }^{\dagger}$
Department of Chemistry, Universitair Centrum Antwerpen, Groenenborgerlaan 171, B-2020 Antwerp, Belgium, and Laboratory of Physical Chemistry, Department of Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Finland

Received: June 17, 1999; In Final Form: July 6, 1999

Abstract

The mid-infrared ($4000-400 \mathrm{~cm}^{-1}$) spectra of ethyne/ BF_{3} and propyne/ BF_{3} mixtures, dissolved in liquefied argon are discussed. In all spectra, the formation of a 1:1 van der Waals complex was observed, while at higher concentrations of BF_{3} absorption bands of a $1: 2$ species between propyne and BF_{3} were also observed. Using spectra recorded at several temperatures between 96 and 125 K , the complexation enthalpy ΔH° for ethyne $\cdot \mathrm{BF}_{3}$ was determined to be $-9.3(4) \mathrm{kJ} \mathrm{mol}{ }^{-1}$. For propyne $\cdot \mathrm{BF}_{3}$ and propyne $\cdot\left(\mathrm{BF}_{3}\right)_{2}$ the ΔH° values are $-13.2(4)$ and $-19.8(12) \mathrm{kJ} \mathrm{mol}^{-1}$, respectively. For the $1: 1$ complexes the structures and harmonic vibrational frequencies were calculated at the MP2/6-31+G(d) level, while for the $1: 2$ adduct similar calculations were carried out at the corresponding RHF level. Using a SCRF/SCIPCM scheme to correct for the solvent influences, and statistical thermodynamics to account for the zero-point vibrational and thermal contributions, approximate values for the gas-phase complexation energy were obtained from the experimental enthalpies. The resulting values, $-14.3(10) \mathrm{kJ} \mathrm{mol}^{-1}$ for ethyne $\cdot \mathrm{BF}_{3},-18.9(10) \mathrm{kJ} \mathrm{mol}^{-1}$ for propyne $\cdot \mathrm{BF}_{3},-30.5(12) \mathrm{kJ} \mathrm{mol}^{-1}$ for propyne $\cdot\left(\mathrm{BF}_{3}\right)_{2}$, are compared with the ab initio values.

Introduction

The π bonds of unsaturated molecules are regions of high electron density. As a consequence, these molecules are nucleophiles, and they can be expected to form adducts with electrophiles. The π bond systems are classified as soft bases in the HSAB Principle, ${ }^{1}$ and, consequently, their adducts with hard acids will be weak. While the structures and properties of strong adducts are well-documented, weak complexes have been much less investigated. It is in the latter field that the present study must be situated. Boron trifluoride is a typical hard acid, whose complexes with ethene and propene have recently been reported for the first time. ${ }^{2}$ In agreement with expectations, the complexation energy in the vapor phase was found to be low, estimated at $-14.2(2) \mathrm{kJ} \mathrm{mol}^{-1}$ for ethene $\cdot \mathrm{BF}_{3}$, and at -16.3 (2) $\mathrm{kJ} \mathrm{mol}^{-1}$ for propene $\cdot \mathrm{BF}_{3}{ }^{2}$ Molecules containing carboncarbon triple bonds will also be soft bases, with a softness similar to that of $\mathrm{C}=\mathrm{C}$ double bonds. Up to now, however, no adducts of such molecules with boron trifluoride appear to have been reported. Therefore, in this study we have investigated if such complexes can be detected. For simplicity, the lower two homologues, ethyne and propyne, were selected as nucleophiles. In view of the expected weakness of the complexes, their formation was studied at low temperatures, in liquid argon (LAr) and liquid nitrogen $\left(\mathrm{LN}_{2}\right)$, using infrared spectroscopy to detect the species. In the following paragraphs we will describe the spectra observed, and it will be shown that complexes with BF_{3} indeed are formed. Their stoichiometry and complexation enthalpy will be reported and, in addition, structural and spectral information obtained from ab initio calculations will be discussed.

[^0]
Experimental Section

The samples of propyne (99\%) and boron trifluoride (CP grade) were purchased from Praxair and Union Carbide, respectively. The ethyne was synthesized in small amounts by hydrolyzing CaC_{2} with $\mathrm{H}_{2} \mathrm{O}$ and was purified by pumping the reaction mixture through a 2-propanol slush (180 K), followed by fractionation on a low-temperature, low-pressure fractionation column. The solvent gases, argon and nitrogen, were supplied by L'Air Liquide and have a stated purity of 99.9999%. In the spectra of ethyne, argon, and nitrogen, no impurities could be detected, while minute amounts of SiF_{4} were present in BF_{3}, and 1,2-propadiene (allene) was detected as an impurity in the propyne used. All gases were used without further purification.
The infrared spectra were recorded on a Bruker IFS 66v or a Bruker 113v Fourier Transform spectrometer, using a Globar source in combination with a $\mathrm{Ge} / \mathrm{KBr}$ beam splitter and a broadband MCT detector. The interferograms were averaged over 200 scans, Happ Genzel apodized, and Fourier transformed using a zero filling factor of 4 to yield spectra at a resolution of $0.5 \mathrm{~cm}^{-1}$.

A detailed description of the liquid noble gas setup has been given before. ${ }^{3}$ To be able to distinguish the spectra of dissolved and undissolved species, the solid-state spectra of ethyne and propyne were obtained by condensing a small amount of the compound onto a CsI window, cooled to 10 K using a Leybold Heraeus ROK 10-300 cooling system, followed by annealing until no further changes were observed in the infrared spectrum.

Computational Details

Ab initio calculations were performed using Gaussian $94 .{ }^{4}$ For all calculations, second-order Møller-Plesset perturbation theory was used including explicitely all electrons, while a $6-31+G(d)$ basis set was used.

TABLE 1: Observed Vibrational Frequencies and Complexation Shifts (cm^{-1}) for $\mathrm{C}_{2} \mathbf{H}_{2},{ }^{10} \mathbf{B F}_{3},{ }^{11} \mathbf{B F}_{3}, \mathrm{C}_{2} \mathbf{H}_{2}{ }^{\cdot 10} \mathbf{B F}_{3}$, and $\mathrm{C}_{2} \mathrm{H}_{2} \cdot{ }^{11} \mathrm{BF}_{3}$ Dissolved in Liquid Argon at 100 K

BF_{3} submolecule ${ }^{a}$	$\begin{gathered} { }^{11} \mathrm{BF}_{3} \\ \bar{v} \end{gathered}$	$\mathrm{C}_{2} \mathrm{H}_{2} \cdot{ }^{11} \mathrm{BF}_{3}$		$\begin{gathered} { }^{10} \mathrm{BF}_{3} \\ \bar{v} \end{gathered}$	$\mathrm{C}_{2} \mathrm{H}_{2} \cdot{ }^{10} \mathrm{BF}_{3}$	
		\bar{v}	$\Delta \bar{v}$		\bar{v}	$\Delta \bar{v}$
$2 v_{3}^{\mathrm{BF}_{3}}$	2887.3	2873.3	-14.0	2989.8	2975.8	-14.0
$v_{1}^{\mathrm{BF}_{3}}+v_{3}^{\mathrm{BF}_{3}}+v_{4}^{\mathrm{BF}_{3}}$	2799.1	2787.0	-12.1	2851.0		
$v_{1}^{\mathrm{BF}_{3}}+v_{3}^{\mathrm{BF}_{3}}$	2325.6	2313.0	-12.6	2375.8	2362.9	-12.9
$2 v_{1}^{\mathrm{BF}_{3}}+v_{4}^{\mathrm{BF}_{3}}$	2235.9	2224.5	-11.4	2235.9	2224.5	-11.4
$v_{3}^{\mathrm{BF}_{3}}+v_{4}^{\mathrm{BF}_{3}^{4}}$	1922.5	1914.5	-8.0	1974.2		
$v_{1}^{\mathrm{BF}_{3}}+2 \nu_{4}^{\mathrm{BF}_{3}}$	1833.5	1825.5	-8.0	1833.5	1825.5	
$v_{3}^{\mathrm{BF}_{3}}$	1445.0	1438.0	-7.0	1494.1	1487.1	-7.0
$v_{1}^{\mathrm{BF}_{3}}+v_{4}^{\mathrm{BF}_{3}}$	1357.7	1351.3	-6.4	1357.7	1351.3	-6.4
$\nu_{1}^{\mathrm{BF}_{3}}$	b	878.5		b	878.5	
$\nu_{2}^{\mathrm{BF}_{3}}$	679.6	651.8	-27.8	712.6	c	
$\nu_{4}^{\mathrm{BF}_{3}}$	474.0	473.1	-0.9	474.0	473.1	-0.9

$\mathrm{C}_{2} \mathrm{H}_{2}$ submolecule ${ }^{\text {d }}$	$\begin{gathered} \mathrm{C}_{2} \mathrm{H}_{2} \\ \bar{v} \end{gathered}$	$\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$	
		\bar{v}	$\Delta \bar{v}$
$\nu_{2}^{\mathrm{C}_{2} \mathrm{H}_{2}}+\nu_{5}^{\mathrm{C}_{2} \mathrm{H}_{2}}$	2701.7	$\{2715.4$	+13.7
		2706.4	+4.7
$\nu_{2} \mathrm{C}_{2} \mathrm{H}_{2}$	d	1970.1	-3.9
$\nu_{4}^{\mathrm{C}_{2} \mathrm{H}_{2}}+v_{5}^{\mathrm{C}_{2} \mathrm{H}_{2}}$	1327.2	1338.6	+11.4
$\nu_{5}^{\mathrm{C}_{2} \mathrm{H}_{2}}$	731.3	747.5	+16.2
$v_{4}{ }^{\mathrm{C}_{2} \mathrm{H}_{2}}$	595.9	591.1	-4.8

[^1]The complexation energies of the complexes were calculated by subtracting the calculated energies of the monomers from that of the complex, and these energies were corrected for basis set superposition error (BSSE) using the counterpoise correction method described by Boys and Bernardi. ${ }^{5}$ For all equilibrium geometries, the vibrational frequencies and the corresponding infrared intensities were calculated using harmonic force fields.

The calculations were carried out on the Cray C94 supercomputer at the CSC-Center for Scientific Computing Ltd (Espoo, Finland) and on a Digital Alpha workstation.

Results

Vibrational Spectra. A. Monomers. The vibrational spectra of boron trifluoride in LAr have been described in detail elsewhere. ${ }^{6,7}$ In contrast, no infrared data of ethyne or propyne in cryosolutions have been reported. Therefore, the vibrational frequencies of these species observed for a solution in LAr at 100 K, are summarized in Tables 1 S and 2S of the Supporting Information. The assignments given in the tables are based on those in the vapor phase. ${ }^{8-10}$ In the tables the fundamentals are numbered according to the Herzberg system. For the complexes we will use the same numbering, using the chemical formula of the species in which the mode is localized, as a superscript.
B. Ethyne $/ B F_{3}$. In the spectra of ethyne $/ \mathrm{BF}_{3}$ mixtures dissolved in LAr, new bands were observed in the vicinity of the monomer bands. This proves that in the solutions a complex is formed. Due to the limited solubility of ethyne, it was not possible to derive the stoichiometry of the complex from a concentration study. ${ }^{2}$ However, on statistical grounds, the $1: 1$ adduct $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ is the most likely complex to be formed and therefore, we assign the observed complex bands to this species. The frequencies of these bands, their assignments, and complexation shifts are summarized in Table 1.

In Figure 1S of the Supporting Information the formation of the complex is illustrated using the $\nu_{1}^{\mathrm{BF}_{3}}+\nu_{3}^{\mathrm{BF}_{3}}$ region of the
spectra. For the mixture new bands appear at 2362.9 and 2313.0 cm^{-1}, on the low-frequency side of the monomer bands at 2375.8 and $2325.6 \mathrm{~cm}^{-1}$, which are due to ${ }^{10} \mathrm{BF}_{3}$ and ${ }^{11} \mathrm{BF}_{3}$, respectively. Similarly, complex bands were found for $\nu_{3}^{\mathrm{BF}_{3}}$, red-shifted from 1494.1 to $1487.1 \mathrm{~cm}^{-1}\left({ }^{10} \mathrm{~B}\right.$ isotopomer) and from 1445.0 to $1378.0 \mathrm{~cm}^{-1}$ (${ }^{11} \mathrm{~B}$ isotopomer), while for the ${ }^{11} \mathrm{BF}_{3}$ out-of-plane deformation modes $v_{2}^{\mathrm{BF}} 3$, a band red-shifted by approximately $28 \mathrm{~cm}^{-1}$ was observed.

Upon complexation with BF_{3}, the $\nu_{5}^{\mathrm{C}_{2} \mathrm{H}_{2}}$ fundamental at $731.3 \mathrm{~cm}^{-1}$ and the $\nu_{4}^{\mathrm{C}_{2} \mathrm{H}_{2}}+\nu_{5}^{\mathrm{C}_{2} \mathrm{H}_{2}}$ combination at $1327.2 \mathrm{~cm}^{-1}$ give rise to blue-shifted complex bands, at 747.5 and 1338.6 cm^{-1}, respectively. Moreover, on the high-frequency side of the monomer band at $2701.7 \mathrm{~cm}^{-1}$, assigned to $\nu_{2}^{\mathrm{C}_{2} \mathrm{H}_{2}}+$ $v_{5}^{\mathrm{C}_{2} \mathrm{H}_{2}}$, a weak doublet due to the $1: 1$ adduct is observed, with maxima at 2715.4 and $2706.4 \mathrm{~cm}^{-1}$, respectively. The observation of a doublet can only be the consequence of the lifting of the degeneracy of $v_{5}^{\mathrm{C}_{2} \mathrm{H}_{2}}$ upon complexation. But then also the fundamental $V_{5}^{\mathrm{C}_{2} \mathrm{H}_{2}}$ in the complex must be a doublet, and this is not obvious from the spectra. A possible explanation for this is offered by the $a b$ initio calculations (vide infra, Table 6 S), which suggest that the second component occurs in the immediate vicinity of monomer $\nu^{\mathrm{C}_{2} \mathrm{H}_{2}}$, which presumably hides it.

The observation of weak complex bands due to modes that are symmetry-forbidden in the monomers is not uncommon. ${ }^{2,11}$ Also for $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ such bands may appear, and, to this end, saturated solutions of BF_{3} and $\mathrm{C}_{2} \mathrm{H}_{2}$ were investigated. The regions of and $\nu_{2}^{\mathrm{C}_{2} \mathrm{H}_{2}}$ and $\nu_{1}^{\mathrm{BF}_{3}}$ of these spectra are shown in Figures 1, parts A and B, respectively. In each region a new band is detected for the mixture. The observed frequencies, 1970.1 and $875.5 \mathrm{~cm}^{-1}$, are sufficiently close to the gas-phase Raman frequencies of the monomer modes involved to warrant their assignment to the induced modes in the complex. Another candidate would be $\nu_{1}^{\mathrm{C}_{2} \mathrm{H}_{2}}$. However, a close inspection of the corresponding spectral region has not revealed the presence of

Figure 1. The $v_{2}^{\mathrm{C}_{2} \mathrm{H}_{2}}$ (A) and $v_{1}^{\mathrm{BF}_{3}}$ (B) region of the spectra of solutions in liquid argon, at 100 K : (a) solution containing both $\mathrm{C}_{2} \mathrm{H}_{2}$ and BF_{3}; (b) solution containing only BF_{3}; (c) solution containing only $\mathrm{C}_{2} \mathrm{H}_{2}$.

TABLE 2: Observed Vibrational Frequencies and Complexation Shifts $\left(\mathrm{cm}^{-1}\right)$ for $\mathrm{C}_{3} \mathrm{H}_{4},{ }^{10} \mathrm{BF}_{3},{ }^{11} \mathrm{BF}_{3}$, $\mathrm{C}_{3} \mathrm{H}_{4}{ }^{\cdot 11} \mathrm{BF}_{3}, \mathrm{C}_{3} \mathrm{H}_{4}{ }^{10} \mathrm{BF}_{3}$, and ${ }^{11} \mathrm{BF}_{3}$ Dissolved in Liquid Argon at 100 K

BF_{3} submolecule ${ }^{a}$	$\begin{gathered} { }^{11} \mathrm{BF}_{3} \\ \bar{v} \end{gathered}$	$\mathrm{C}_{3} \mathrm{H}_{4} \cdot{ }^{11} \mathrm{BF}_{3}$		$\begin{gathered} { }^{10} \mathrm{BF}_{3} \\ \bar{v} \end{gathered}$	$\mathrm{C}_{3} \mathrm{H}_{4} \cdot{ }^{10} \mathrm{BF}_{3}$	
		\bar{v}	$\Delta \bar{v}$		\bar{v}	$\Delta \bar{\nu}$
$v_{1}^{\mathrm{BF}_{3}}+v_{3}^{\mathrm{BF}}{ }^{\text {a }}$	2325.1	2304.8	-20.3	2376.2	2354.4	-20.8
$v_{3}^{\mathrm{BF}_{3}}$	1444.8	1433.0	-11.8	1496.3	1484.5	-11.8
$\nu_{1}^{\mathrm{BF}_{3}}+\nu_{4}^{\mathrm{BF}_{3}}$	1358.2	1347.6	-10.6	1358.2	1347.6	-10.6
$\nu_{1}^{\mathrm{BF}_{3}}$	a	875.3		a	875.3	
$\nu_{2}^{\mathrm{BF}_{3}}$	680.4	643.1	-37.5	707.9	672.1	-35.8
	$\mathrm{C}_{3} \mathrm{H}_{4}$	C_{3}	BF_{3}			
$\mathrm{C}_{3} \mathrm{H}_{4}$ submolecule	\bar{v}	\bar{v}	$\Delta \bar{v}$			
$\nu_{1}^{\mathrm{C}_{3} \mathrm{H}_{4}}$	3328.9	3322.8	-6.1			
$v_{3}^{\mathrm{C}_{3} \mathrm{H}_{4}}$	2138.5	2134.2	-4.3			
$2 \nu_{9}^{\mathrm{C}_{3} \mathrm{H}_{4}}$	1250.1	$\{1257.1$	+7.0			
		1292.0	+41.9			
$v_{9}^{\mathrm{C}_{3} \mathrm{H}_{4}}$	630.2	659.1	+29.1			

${ }^{a}$ Not infrared-active, Raman gas-phase frequency at $888 \mathrm{~cm}^{-1}$.
an induced band, so it must be concluded that this mode in the complex is extremely weak.
C. Propyne $/ B F_{3}$. Also for $\mathrm{C}_{3} \mathrm{H}_{4} / \mathrm{BF}_{3}$ mixtures dissolved in LAr new bands are observed near monomer bands of both $\mathrm{C}_{3} \mathrm{H}_{4}$ and BF_{3}, signaling that a complex is formed. The observed frequencies, their assignments and the complexation shifts are summarized in Table 2.

In Figure 2S, several spectral regions of mixed solutions are compared with those of the monomers. In the $v_{3}^{\mathrm{BF}_{3}}$ region, Figure $2 \mathrm{~S}(\mathrm{~B})$, of the mixed solutions, complex bands are observed at 1484.5 and $1433.0 \mathrm{~cm}^{-1}$. Meanwhile, on the lowfrequency side of the $\nu_{2}^{\mathrm{BF}_{3}}$ isotopic doublet, shown in Figure $2 S(C)$, complex bands appear at 672.1 and $643.1 \mathrm{~cm}^{-1}$.

Figure $2 \mathrm{~S}(\mathrm{~A})$, giving the region of $v_{1}^{\mathrm{BF}_{3}}+\nu_{3}^{\mathrm{BF}_{3}}$, shows that also for propyne $/ \mathrm{BF}_{3}$ mixtures complex bands are observed for the combination bands involving $v_{2}^{\mathrm{BF}_{3}}$ or $v_{3}^{\mathrm{BF}_{3}}$.

For $\nu_{9}^{\mathrm{C}_{3} \mathrm{H}_{4}}$ and $2 \nu_{9}^{\mathrm{C}_{3} \mathrm{H}_{4}}$, assigned in the monomer at 630.2 and $1250.1 \mathrm{~cm}^{-1}$, complex bands appear at $659.1,1257.1$, and $1292.0 \mathrm{~cm}^{-1}$. Just as for $\nu_{5}^{\mathrm{C}_{2} \mathrm{H}_{2}}$ in the ethyne complex, the occurrence of a doublet for $2 \nu_{9}$ proves that the degeneracy of v_{9} in the complex is lifted. The absence of a complex doublet for the fundamental transition also here is explained by the ab initio calculations (vide infra, Table 7S), which predict that, as for $\nu_{5}^{\mathrm{C}_{2} \mathrm{H}_{2}}$, one of the components of ν_{9} in the complex occurs nearly accidentally degenerate with the monomer v_{9} band.

TABLE 3: Complexation Energies $\left(\mathbf{k J ~ m o l}^{-1}\right)$ for $\mathbf{C}_{2} \mathbf{H}_{\mathbf{2}} \cdot \mathbf{B F}_{\mathbf{3}}$ and $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$

	$\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$
$\mathrm{MP} 2 / 6-31+\mathrm{G}(\mathrm{d})$		
ΔE	-16.25	-22.62
E_{BSSE}	-9.44	-13.07
ΔE_{c}	-6.81	-9.55
$\mathrm{MP} 2 / 6-311++\mathrm{G}(3 \mathrm{df}, 2 \mathrm{pd}) / / \mathrm{MP} 2 / 6-31+\mathrm{G}(\mathrm{d})$		
ΔE	-15.31	-19.25
E_{BSSE}	-5.83	-4.98
ΔE_{c}	-9.68	-14.26
$\mathrm{MP} 2 / \mathrm{aug}-\mathrm{cc}$ PVTZ//MP2/6-31+G(d)		
ΔE	-20.95	-23.31
E_{BSSE}	-9.13	-8.76
ΔE_{c}	-11.80	-14.55
Experimental values		
$\Delta H_{\mathrm{LAr}}^{\circ}$	$-9.3(4)$	$-13.2(4)$
$\Delta H_{\mathrm{gas}}^{\mathrm{a}}{ }^{a}$	$-12.2(4)$	$-16.6(4)$
$\Delta E_{\mathrm{c}}^{\text {gas }}$ a		

${ }^{a}$ Obtained by using the SCRF/SCIPCM solvent destabilization energies calculated at the RHF/6-311+G(d) level. ${ }^{b}$ Obtained by correcting for zero-point vibrational and thermal influences.

TABLE 4: Van der Waals Bond Lengths and Dissociation Energies for ethyne $\cdot \mathrm{BF}_{3}$ and propyne $\cdot \mathrm{BF}_{3}$ Derived Using RHF/6-311 + +G(2d,2p) Distributed Multipole Moments and Lennard-Jones Atom-Atom Potentials

	calculation 1^{a}	calculation 2^{a}
ethyne $\cdot \mathrm{BF}_{3}$		
$\Delta E / \mathrm{kJ} \mathrm{mol}^{-1}$	-15.43	-17.95
$\mathrm{R}_{\mathrm{X} \cdots \mathrm{B}} / \mathrm{A}$	2.97	2.92
propyne $\cdot \mathrm{BF}_{3}$		
$\Delta E / \mathrm{kJ} \mathrm{mol}^{-1}$	-26.09	-25.15
$\mathrm{R}_{\mathrm{X} \cdots \mathrm{B}} / \mathrm{A}$	2.87	2.93

${ }^{a}$ Calculation 1: results obtained using point charges, dipoles, and quandrupoles; calculation 2: results obtained using point charges, dipoles, quadrupoles, and octupoles.

Figure 2. $v_{1}^{\mathrm{C}_{3} \mathrm{H}_{4}}(\mathrm{~A})$, and $v_{3}^{\mathrm{C}_{3} \mathrm{H}_{4}}(\mathrm{~B})$ and $v_{1}^{\mathrm{BF}_{3}}(\mathrm{C})$ regions for a solution in liquid argon containing $\mathrm{C}_{3} \mathrm{H}_{4}$ and BF_{3}. The bottom spectra were recorded from a solution containing only $\mathrm{C}_{3} \mathrm{H}_{4}$. For the other spectra, the temperatures of the solution are, from top to bottom, 116, 111, 106 , and 101 K .

Figure 2 illustrates the temperature dependence of the complex bands in the regions of $v_{1}^{\mathrm{C}_{3} \mathrm{H}_{4}},(\mathrm{~A})$ and $\nu_{3}^{\mathrm{C}_{3} \mathrm{H}_{4}}$, (B) $\nu_{1}^{\mathrm{BF}_{3}}$, for a solution in LAr for which the mole fractions of $\mathrm{C}_{3} \mathrm{H}_{4}$ and BF_{3} are 3×10^{-5} and 7.5×10^{-5}, respectively. It can be seen that for $\nu_{1}^{\mathrm{C}_{3} \mathrm{H}_{4}}$ and for $\nu_{3}^{\mathrm{C}_{3} \mathrm{H}_{4}}$ a second complex band becomes clearly visible at lower temperatures, while for these modes no lifting of degeneracy is involved. The spectra in Figure 2 have been drawn in such a way that the absorbance of the more intense complex band is the same at all temperatures, and it
can be seen that lowering the temperature increases the absorbance of the second complex band. This shows that the first and second complex band in each region arise in different complexes. As similar behavior is observed for isothermal concentration studies, the stoichiometry of the complexes must be different. These stoichiometries were determined as described before, ${ }^{2}$ from a concentration study. In this, solutions in LAr containing mole fractions of $\mathrm{C}_{3} \mathrm{H}_{4}$ varying between 0.9×10^{-5} and 6.6×10^{-5}, and of BF_{3} varying between 0.6×10^{-5} and 15×10^{-5}, were investigated at a constant temperature of $105.9(5) \mathrm{K}$. Intensities for monomer propyne and the complexes were taken from least squares band fittings of the $\nu_{1} \mathrm{C}_{3} \mathrm{H}_{4}$ region, and for BF_{3} the integrated intensity of the $2376.2 \mathrm{~cm}^{-1}$ was used. Using these, plots were made of the intensities of the complex bands at 3322.6 and $3316.3 \mathrm{~cm}^{-1}$ versus the intensity products $\left(I_{\mathrm{BF}_{3}}\right)^{2} \times I_{\mathrm{C}_{3} \mathrm{H}_{4}}(\mathrm{a}), I_{\mathrm{BF}_{3}} \times I_{\mathrm{C}_{3} \mathrm{H}_{4}}(\mathrm{~b})$, and $I_{\mathrm{BF}_{3}} \times\left(I_{\mathrm{C}_{3} \mathrm{H}_{4}}\right)^{2}$. The χ^{2} values for the linear regressions on these plots are given in Table 3S. It is clear from these data that for the $3322.6 \mathrm{~cm}^{-1}$ band the highest linearity is obtained for product (b), and for product (a) in the case of the $3316.3 \mathrm{~cm}^{-1}$ band. This shows that the former arises in a $1: 1$ complex $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$, and the latter in a $1: 2$ complex $\mathrm{C}_{3} \mathrm{H}_{4} \cdot\left(\mathrm{BF}_{3}\right)_{2}$. Finally, Figure 2 C gives the region of $v_{1}^{\mathrm{BF}_{3}}$. Also here, two induced bands are visible at the lowest temperatures. Consistent with the above results, the stronger one, at $875.3 \mathrm{~cm}^{-1}$, is assigned to the $1: 1$ complex, the weaker one, at $877.5 \mathrm{~cm}^{-1}$, to the $1: 2$ complex.

Complexation Enthalpy of the Observed Species. Using the Van't Hoff isochore, ${ }^{12}$ it can be shown that $\ln \left[I_{\mathrm{C}_{x} \mathrm{H}_{y} \cdot\left(\mathrm{BF}_{3}\right)_{n}} /\right.$ $\left.I_{\mathrm{C}_{x} \mathrm{H}_{y}} \times\left(I_{\mathrm{BF}_{3}}\right)^{n}\right]$ is linearly related to $1 / T$, and that the slope of this relation equals $-\Delta H^{\circ} / R$, in which ΔH° is the complexation enthalpy. To establish the complexation enthalpy of $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$, $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$, and $\mathrm{C}_{3} \mathrm{H}_{4} \cdot\left(\mathrm{BF}_{3}\right)_{2}$, the spectra of several $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ and $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$ mixtures in LAr were recorded at different temperatures between 96 and 125 K . At temperatures below 107 K , a large fraction of the ethyne molecules crystallizes and so only very weak absorption bands due to dissolved $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{2} . \mathrm{BF}_{3}$ are observed. Because such spectra do not allow a precise quantitative analysis, they were not used in the analysis.

Also this analysis requires the integrated intensities of a band of each species involved in the equilibrium. For $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$, the well-separated combination bands in the $\nu_{1}^{\mathrm{BF}_{3}}+\nu_{3}^{\mathrm{BF}_{3}}$ region were used to obtain intensities for monomer BF_{3} and the complex. Unfortunately, for all modes localized in the ethyne moiety, the complex bands strongly overlap with the monomer modes, making an accurate determination of $I_{\mathrm{C}_{2} \mathrm{H}_{2}}$ rather difficult. For the solutions studied, however, the intensity of the 747.5 cm^{-1} band, assigned to the $1: 1$ complex, was very small compared to that of the $731 \mathrm{~cm}^{-1}$ monomer band. This shows that, even at the lowest tempertures, only a minor fraction of the ethyne molecules are complexed. Then, the contribution of the complex to the $731 \mathrm{~cm}^{-1}$ doublet can be neglected without introducing serious error. Therefore, as monomer intensity $I_{\mathrm{C}_{2} \mathrm{H}_{2}}$ the numerically integrated intensity of the $3874.9 / 3891.0 \mathrm{~cm}^{-1}$ doublet was used, without correcting for the presence of complex bands. The resulting Van't Hoff plot for $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ is shown in Figure 3a. From the slope of the linear regression, corrected for the density variation of the solution, ${ }^{12}$ the complexation enthalpy ΔH° was calculated to be $-9.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Using the integrated intensities of the same monomer and complex bands as in the stoichiometry study described above, Van't Hoff plots for $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$ and $\mathrm{C}_{3} \mathrm{H}_{4} \cdot\left(\mathrm{BF}_{3}\right)_{2}$ were constructed. From these plots, shown in Figure 3, parts b and c, respectively, and accounting for the density variations of the solution, ${ }^{12}$ the complexation enthalpies were calculated to be

Figure 3. Van't Hoff plots for $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}(\mathrm{a}), \mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}(\mathrm{~b})$, and $\mathrm{C}_{3} \mathrm{H}_{4} \cdot$ $\left(\mathrm{BF}_{3}\right)_{2}$ (c) in liquefied argon.

Figure 4. MP2/6-31+G(d) equilibrium geometries for $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ (A) and $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}(\mathrm{~B})$.
$-13.2(4) \mathrm{kJ} \mathrm{mol}^{-1}$ for $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$ and $-19.8(12) \mathrm{kJ} \mathrm{mol}^{-1}$ for $\mathrm{C}_{3} \mathrm{H}_{4} \cdot\left(\mathrm{BF}_{3}\right)_{2}$.

Ab Initio Calculations. Insight into the structure of $\mathrm{C}_{2} \mathrm{H}_{2}{ }^{-}$ BF_{3} and $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$ was gained from ab initio calculations at the MP2/6-31+G(d) level. The resulting equilibrium geometries are shown in Figure 4. The structural parameters are reported in Tables 4S and 5S.

For the $1: 1$ complexes, we found structures with C_{s} symmetry, in which the boron atom sits above the π bond of the Lewis base. Therefore, as for ethene $\cdot \mathrm{BF}_{3}$ and propene $\cdot \mathrm{BF}_{3}$, also here the main contribution to the complexation energy must be due to the interaction between the electron-rich π-system and the electron-deficient boron atom. It can be noted from Figure 4, however, that in both complexes one $\mathrm{B}-\mathrm{F}$ bond is parallel to the $\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ skeleton. This suggests that a weak interaction between the in-plane F atom and the terminal hydrogen atom of the Lewis base contributes in determining the structure.

A detailed description of the equilibrium geometries requires the definition of a van der Waals bond. For $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$, the latter could be defined as the intermolecular distance separating the respective centers of masses of the monomers. A similar analysis for $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$, however, is not as straightforward. Therefore, in this study, we defined the van der Waals bond length as the distance between the boron atom and a dummy atom X situated on the line connecting the two carbon atoms of the triple bond, at the perpendicular projection of the boron atom.

From $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ to $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$, the distance $R_{\mathrm{X} \cdots \mathrm{B}}$ decreases slightly, from 2.92 to $2.81 \AA$, suggesting that the interaction in $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$ is slightly stronger than in $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$. This is in line with the experimental complexation enthalpies, and with the calculated complexation energies of the complexes.

The complexation has only minor influences on the bond lengths and bond angles of the monomer molecules, and these changes are easily understood from donor-acceptor considerations. ${ }^{13}$ The complexation also leads to small deviations from planarity for the BF_{3} molecules, and to small deviations from linearity for the $\mathrm{R}-\mathrm{C} \equiv \mathrm{CH}$ molecular skeletons.

Figure 5. Comparison of the complexation enthalpies ΔH° for the complexes formed between various Lewis bases, HCl , and BF_{3}. The Lewis bases studied are (a) cyclopropane, (b) ethyne, (c) ethene, (d) propene, and (e) propyne.

Typical for weakly bound van der Waals complexes are the low barriers hindering internal rotation. The barriers hindering rotation around the van der Waals bond were obtained by systematically varying the required angular parameter, at each value relaxing all other structural parameters. The values, $0.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ and $0.05 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$, illustrate the extreme nonrigidity of the present complexes.

The vibrational frequencies and infrared intensities of the monomers and the $1: 1$ complexes calculated at the MP2/6$31 \mathrm{G}+(\mathrm{d})$ level, together with the frequency shifts $\Delta v=v_{\text {complex }}$ - $v_{\text {monomer }}$, are given in Tables 6 S and 7S. Comparison of calculated with observed shifts shows that in all cases the ab initio calculations predict the correct direction of the shift. However, the agreement is not quantitative. For example, the calculated shifts of the BF_{3} fundamentals are significantly larger than the observed ones.

For both $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ and $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$, the C_{s} symmetry of the complexes causes the degenerace of the antisymmetric BF_{3} stretches to be lifted. This leads to predicted splittings of 3-5 cm^{-1}. However, things are complicated by the very low internal rotation barrier which makes that the observed antisymmetric stretches are an average over a mixture of initial states, a substantial contribution stemming from molecules excited in torsional levels above the barrier. Instead of giving rise to a well-defined doublet, such an average will collapse into a single, broad band. In agreement with this, for both complexes a single band for these modes is observed.

Discussion

Figure 5 compares the complexation enthalpies of the HCl complexes of ethene, ${ }^{11}$ propene, ${ }^{14}$ cyclopropane, ${ }^{14}$ ethyne,,${ }^{14,15}$ and propyne ${ }^{14}$ with those of the corresponding BF_{3} complexes. It can be seen that the BF_{3} complexes systematically have a higher ΔH°, confirming that BF_{3} is a stronger Lewis acid than HCl . Except for the ethyne complexes, the data exhibit a high degree of linearity, which shows that the strengths of HCl and BF_{3} complexes of unsaturated, or pseudo-unsaturated nucleophiles are closely correlated. If we assume that the correlation
must be valid for the ethyne complexes as well, there being no obvious reason it should not, Figure 5 suggests that the reported strength of ethyne $/ \mathrm{HCl}$ is underestimated by approximately $1.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (it may be remarked that the ΔH° for this complex has the largest uncertainty of the points reported in Figure 5).

The ab initio complexation energies $\Delta E_{\mathrm{C}}^{\text {ab initio }}$ can be compared with experiment if the observed enthalpies are transformed into energies. This was accomplished in two steps. In the first, vapor phase enthalpies $\Delta H_{\text {gas }}^{\circ}$ were obtained by correcting the solution values for solvation effects. The latter were estimated from Self-Consistent Isodensity Polarizable Continuum Model (SCIPCM) calculations ${ }^{17}$ at the RHF/6-311+G* level. The solvation free enthalpies for the monomers resulting from these calculations are collected in Table 8 S .

From the free enthalpies, the solvation enthalpies were calculated as described by Stolov et al., ${ }^{18}$ and these were used to transform the liquid phase ΔH° into the vapor phase value $\Delta H_{\text {gas }}^{\circ}$. The values found are $-12.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ and $-16.6(4) \mathrm{kJ} \mathrm{mol}^{-1}$ for $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$.

In the second step, the zero-point and thermal contribution were subtracted from the $\Delta H_{\mathrm{gas}}^{\circ}$, resulting in complexation energies. These contributions were calculated using standard statistical thermodynamics, from the ab initio vibrational frequencies and rotational constants. The temperature used was 100 K , which is very close to the midpoint of the temperature interval in which the experimental ΔH° values were determined. The complexation energies $\Delta E_{\mathrm{C}}^{\mathrm{exp}}$ arrived at are $-14.3(10) \mathrm{kJ} \mathrm{mol}^{-1}$ for $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ and $-18.9(10) \mathrm{kJ} \mathrm{mol}^{-1}$ for $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$. To account for the approximations used, the uncertainties were taken to be the experimental values multiplied by 2.5.

The uncorrected $\Delta E_{\mathrm{C}}^{\mathrm{ab} \text { initio }}$ values calculated at the MP2/6$31+\mathrm{G}(\mathrm{d})$ level overestimate $\Delta E_{\mathrm{C}}^{\mathrm{exp}}$ by 14% for $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ and 20% for $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$, and the BSSE-corrected values are only about half the experimental values. A poor agreement of BSSEcorrected values with experiment has been noted previously ${ }^{2,16,19}$ and has been attributed to the fact that for a truncated basis set, such as that used above, the BSSE is largely counterbalanced by the basis set incompleteness error (BSIE).

Both types of error can be decreased by saturating the basis set. Therefore, the complexation energies were obtained from single point calculations at the MP2/6-311 $++G(3 \mathrm{df}, 2 \mathrm{pd})$ and MP2/aug-cc-PVTZ levels. The resulting values before and after the correction for BSSE, are collected in Table 3. It is clear that enlarging the basis set to $6-311++G(3 d f, 2 p d)$ significantly decreases the BSSE for both complexes. Meanwhile, the corrected complexation energies increase slightly. Comparison with Table 3 shows, however, that even at the MP2/6-311++G(3df, 2pd) level the corrected values remain significantly smaller than the experimental values.

At the MP2/aug-cc-PVTZ level, the uncorrected complexation energies as well as the BSSE increase, resulting in corrected complexation energies of $-11.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ and $-14.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$. These results illustrate that Dunning's augmented correlation consistent basis set significantly improves the agreement of the experimental with the BSSE-corrected values, while the agreement with the uncorrected values deteriorates. However, even at this level the corrected values still underestimate the experimental ones by ca. 15%. This is consistent with earlier results ${ }^{16,18,20,21}$ which indicate that at the correlated level the BSSE is slightly overcorrected when using the counterpoise correction.

It is widely accepted that van der Waals complexes are held together by electrostatic forces. To see if this applies to the complexes studied here, we have predicted the van der Waals bond lengths and interaction energies for $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ and $\mathrm{C}_{3} \mathrm{H}_{4} \cdot$ BF_{3} with a model in which the attractive, electrostatic interactions are balanced by Lennard-Jones atom-atom interaction potentials, ${ }^{22}$ as implemented in A. J. Stone's Orient program. ${ }^{23}$ The electrostatic terms in this model are calculated from distributed multipole expansions of the charge distributions in the monomers. These multipoles were calculated with the Gamess US program, ${ }^{24}$ at the RHF/6-311++G(2d,2p) level. The convergence of the electrostatic energy was tested by performing the calculation twice, the first time truncating the multipole expansion after the quadrupoles, the second time also including the octupoles.

For both complexes, the calculations resulted in a structure similar to that obtained from the ab initio calculations. The van der Waals bond lengths and complexation energies obtained from these calculations are collected in Table 4. It can be seen that the inclusion of the octupoles changes the complexation energies significantly, showing that convergence presumably requires inclusion of multipoles beyond the octupoles.

Compared with the experimental complexation energies, the relative stability order is correctly predicted, but the stabilities are overestimated by 35-40\%. Lacking values for the multipoles beyond the octupoles, it cannot be decided if the differences are inherent to the electrostatic model, or if the nonconvergence of the calculation is to be blamed.

The ab initio dipole moment of $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{BF}_{3}$ is $0.58 \mathrm{D} . \mathrm{BF}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ having zero dipole moments, the value of the complex can be explained as the sum of two contributions. The first is the structural contribution, arising as a consequence of the nonplanarity of BF_{3} and the nonlinearity of $\mathrm{C}_{2} \mathrm{H}_{2}$ in the complex. The second contribution is due to the moments induced by the multipoles of each monomer in the other.

The structural contributions $\mu_{\mathrm{BF}_{3}}$ and $\mu_{\mathrm{C}_{2} \mathrm{H}_{2}}$ were estimated by an ab initio calculation on the monomers, using the geometry they have in the complex. For BF_{3}, this leads to a dipole moment $\mu_{\mathrm{BF}_{3}}$ of 0.18 D , and for $\mathrm{C}_{2} \mathrm{H}_{2}$ to a value of 0.02 D , both dipole moments nearly parallel to the van der Waals bond. They have been indicated schematically on the right-hand side of Figure 3S. The value for BF_{3} can easily be rationalized. ${ }^{25}$ By subtracting the structural moments of the monomers from the total dipole moment, the induced contribution is calculated to be 0.39 D , and it is almost parallel to the van der Waals bond. Thus, it is clear that the dipole moment of the complex is caused by structural deformations and induced contributions of similar magnitude.

A similar analysis was performed for the propyne complex. Here, the analysis is slightly more complex, as propyne itself has a moment of 0.77 D. In Figure 3S the different contributions to the dipole moment, $\mu_{\text {complex }}$, and their relative orientations are given. It can be seen that also for this complex both structural and induced dipole moments are important.

In addition to the bands assigned to the dimer $\mathrm{C}_{3} \mathrm{H}_{4} \cdot \mathrm{BF}_{3}$, weak bands due to a trimer species $\mathrm{C}_{3} \mathrm{H}_{4} \cdot\left(\mathrm{BF}_{3}\right)_{2}$ were observed at $3316.3,2129.7$, and $877.5 \mathrm{~cm}^{-1}$. It is tempting to interpret this complex as one in which the propyne molecule binds to a $\left(\mathrm{BF}_{3}\right)_{2}$ dimer. However, the latter has not been observed in cryogenic solutions up to now. Therefore, we prefer the interpretation that the $1: 2$ complex has a bifurcated structure in which both the BF_{3} molecules bind to the $\mathrm{C} \equiv \mathrm{C}$ triple bond. Insight into this complex was again obtained from ab initio calculations. To reduce to an acceptable limit the required computer time, these

Figure 6. $\mathrm{RHF} / 6-31+\mathrm{G}(\mathrm{d})$ equilibrium geometry for $\mathrm{C}_{3} \mathrm{H}_{4} \cdot\left(\mathrm{BF}_{3}\right)_{2}$.
calculations were performed at the RHF/6-31+G/d) level. The resulting equilibrium geometry is shown in Figure 6. The calculated angle between the two van der Waals bonds is 107.5 degrees. In Table 9S the observed frequency shifts are compared with the calculated values. The agreement is very good, which supports our identification of the observed 1:2 complex.
The complexation energy of the $1: 2$ complex was derived from the ΔH° in LAr by the methods described above, and results in a value of $-30.5(12) \mathrm{kJ} \mathrm{mol}^{-1}$, while for the $1: 1$ complex the value of $-18.9(8) \mathrm{kJ} \mathrm{mol}^{-1}$ was obtained above. These must be compared with the RHF/6-31+G(d) values, corrected for BSSE, of -12.28 and $-6.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the $1: 2$ and $1: 1$ complex, respectively. The ab initio values poorly agree with the experimental values, which must be blamed to the relatively limited basis set that were used because of the size of the 1:2 complex. It is clear, however, that for the experimental as well as for the ab initio data the complexation energy for the $1: 2$ complex is less than twice the value for the $1: 1$ complex. Hence, an anti-cooperative effect is active, which makes that the addition of a second BF_{3} molecule weakens the bond between the nucleophile and the first BF_{3} molecule.

Acknowledgment. W.A.H. is indebted to the Fund for Scientific Research (FWO, Belgium) for an appointment as Postdoctoral Fellow. The FWO is also thanked for financial help toward the spectroscopic equipment used in this study. Financial support by the Flemish Community, through the Special Research Fund (BOF), is gratefully acknowledged. The authors thank the CSC-Center for Scientific Computing Ltd. (Espoo, Finland) for computer mainframe time.

Supporting Information Available: Tables 1S and 2 S report the observed frequencies, and their assigments, of ethyne and propyne, respectively, dissolved in liquid argon, at 100 K . Table 3S gives the χ^{2}-values for the stoichiometry analysis of the complexes between propyne and BF_{3}. In Tables 4 S and 5 S the MP2/6-31+G(d) structural parameters of the $1: 1$ complexes of BF_{3} with ethyne and propyne, respectively, are compared with those of the monomers. Tables 6S and 7S contain the MP2/ $6-31+\mathrm{G}(\mathrm{d})$ vibrational frequencies and infrared intensities for the $1: 1$ complexes of BF_{3} with ethyne and propyne, respectively. Table 8S gives the SCRF-SCIPCM solvation enthalpies and free enthalpies for the species studied. In Table 9S the RHF/6$31+\mathrm{G}^{*}$ vibrational frequencies of the monomers and the $1: 1$ and $1: 2$ complexes of propyne with BF_{3} are compared with the experimental frequencies observed in liquid argon. Figure 1S illustrates the formation of a complex between BF_{3} and ethyne in liquid argon, as observed in the $2400-2300 \mathrm{~cm}-1$ region of the infrared spectrum. Figure 2 S gives details of the infrared spectra of solutions in liquid argon containing propyne and BF_{3}. Figure 3S shows the decomposition in structural and induced components of the dipole moment of the $1: 1$ complexes of BF_{3} with etyne and propyne. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Pearson, R. G. Inorg. Chim. Acta 1995, 240, 93.
(2) Herrebout, W. A.; Van der Veken, B. J. J. Am. Chem. Soc. 1997, 10446.
(3) Van der Veken, B. J. Infrared Spectroscopy in Liquefied Noble Gases. In Low-Temperature Molecular Spectroscopy; Fausto, R., Ed.; Kluwer Academic Publishers: Dordrecht, 1996.
(4) Frisch, M. P.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision E2; Gaussian, Inc.: Pittsburgh, PA, 1995.
(5) Boys, S. B.; Bernardi, F. Mol. Phys. 1970, 19, 553.
(6) Sluyts, E. J.; Van der Veken, B. J. J. Am. Chem. Soc. 1996, 118, 440.
(7) Herrebout, W. A.; Van der Veken, B. J. J. Am. Chem. Soc. 1998, 120, 9921.
(8) Tesamani, M. A.; Herman, M. J. Chem. Phys. 1995, 102, 6371.
(9) Herman, M.; Elldussi, M. L.; Disarchik, A.; Dilonardo, G.; Fusiana, L. J. Chem. Phys. 1998, 108, 1377.
(10) Sverdlov, L. M.; Kovner, M. A.; Krainov, E. P. Vibrational Spectra of Polyatomic Molecules; Wiley: New York, 1974, and references therein.
(11) Herrebout, W. A.; Everaert, G. P.; Van der Veken, B. J.; Bulanin, M. O. J. Chem. Phys. 1997, 107, 8886.
(12) Van der Veken, B. J. J. Phys. Chem. 1996, 100, 17436.
(13) Gutman, V. The Donor-Acceptor Approach to Molecular Interactions; Plenum Press: New York, 1988.
(14) Herrebout, W. A.; Everaert, G. P.; van der Veken, B. J. Unpublished results.
(15) Tokhadze, K. G.; Tkhozheskaya, N. A. J. Mol. Struct. 1992, 270, 351.
(16) Everaert, G. P.; Herrebout, W. A.; Van der Veken, B. J.; Lundell, J.; Räsänen, M. Chem. Eur. J. 1988, 4, 321.
(17) Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem. 1996, 100, 16098.
(18) Stolov, A. A.; Herrebout, W. A.; Van der Veken, B. J. J. Am. Chem. Soc. 1998, 120, 7310.
(19) Jonas, V.; Frenking, G.; Reetz, M. T. J. Am. Chem. Soc. 1994, 116, 7714.
(20) Rayen, Y. M.; Sordo, J. A. J. Phys. Chem. A. 1997, 101, 7414.
(21) Suares, D.; Sordo, T. L. J. Phys. Chem. 1996, 100, 13462.
(22) Wales, D. J.; Popelier, P. L. A.; Stone, A. J. J. Chem. Phys. 1995, 102, 5551.
(23) Stone, A. J.; Dullweber, A.; Popelier, P. L. A.; Wales, D. J. Orient: A program for studying interactions between molecules, version 3.2; University of Cambridge, Cambridge, U.K.
(24) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347.
(25) Van der Veken, B. J.; Sluyts, E. J. J. Phys. Chem. A 1997, 101, 9070.

[^0]: * Corresponding author. E-mail: bvdveken@ruca.ua.ac.be.
 \dagger Universitair Centrum Antwerpen.
 $\stackrel{\text { University of Helsinki. }}{ }$

[^1]: ${ }^{a}$ The BF_{3} normal modes are identified as follows: ν_{1} is the BF_{3} symmetric stretch, ν_{2} is the BF_{3} out of plane deformation, ν_{3} is the BF_{3} antisymmetric stretch, v_{4} is the BF_{3} in plane deformation. ${ }^{b}$ Not infrared-active, Raman gas-phase frequency at $888 \mathrm{~cm}^{-1}$. ${ }^{c}$ Due to the overlap with the $679.6 \mathrm{~cm}^{-1}$ band, no accurate frequency could be determined for the $v_{2}^{\mathrm{BF}_{3}}$ mode in $\mathrm{C}_{2} \mathrm{H}_{2} \cdot{ }^{10} \mathrm{BF}_{3}$. ${ }^{d}$ Not infrared-active, Raman gas-phase frequency at $1974 \mathrm{~cm}^{-1}$.

